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part, based on a local decision. This approach has several
We present a class of PDE-based algorithms suitable for key virtues. First, it contains only one enhancement param-

image denoising and enhancement. The techniques are applica- eter, which in most cases is automatically chosen. Second,
ble to both salt-and-pepper gray-scale noise and full-image the scheme automatically picks the stopping criteria; con-
continuous noise present in black and white images, gray-scale tinued application of the scheme produces no further
images, texture images, and color images. At the core, the

change. Third, the method is one of the fastest possibletechniques rely on two fundamental ideas. First, a level set
schemes based on a curvature-controlled approach.formulation is used for evolving curves; use of this technique to

The methods presented in this paper are derived fromflow isointensity contours under curvature is known to remove
noise and enhance images. Second, the particular form of the the Osher–Sethian [17] level set formulation of front prop-
curvature flow is governed by a min/max switch which selects agation, which grew out of earlier by Sethian [23] on the
a range of denoising dependent on the size of switching window. mathematical formulation of curve and surface motion.
Our approach has several virtues. First, it contains only one The application of this level set perspective to image pro-
enhancement parameter, which in most cases is automatically cessing, and the design of a PDE-based approach to image
chosen. Second, the scheme automatically stops smoothing at enhancement and noise removal was introduced in two
a point which depends on the switching window size; continued

pivotal papers; the work of Alvarez et al. [3] and the workapplication of the scheme produces no further change. Third,
of Osher and Rudin [16]. While the work presented herethe method is one of the fastest possible schemes based on a
starts from the original curve evolution work [23] and levelcurvature-controlled approach.  1996 Academic Press, Inc.

set formulation presented in [17, 24], it owes a significant
debt to the ground-breaking work of Alvarez et al. and
Osher and Rudin.1. INTRODUCTION

The fundamental idea in our approach is to return to
The essential idea in image smoothing is to filter noise the simplest possible problem, namely, the evolution of a

present in the image signal without sacrificing the useful curve under its curvature. We design a technique in which
detail. In contrast, image enhancement focuses on prefer- the motion of this curve at each point is based on either
entially highlighting certain image features. Together, they min(k, 0) or max(k, 0). This flow stops automatically at a
are precursors to many low-level vision procedures such desired point and forms the core of our approach. Applica-
as edge finding [15, 5], shape segmentation, and shape tion of this scheme to both salt-and-pepper gray-scale noise
representation [13, 14, 11]. In this paper, we present a and Gaussian noise removal in images is straightforward
method for image smoothing and enhancement which is a for binary, gray-scale, and color images. We then extend
variant of the geometric heat equation. This technique is the technique to textured images, making use of both the
based on a min/max switch which controls the form of the curvature and the mean curvature of the underlying image
application of the geometric heat equation, selecting either when viewed as a graph.
flow by the positive part of the curvature or the negative The outline of this paper is as follows. First, in Section

II, we give a very brief background. Next, in Sections III
and IV, we study the motion of a curve moving under its

1 Supported in part by the Applied Mathematics Subprogram of the curvature and develop an automatic stopping criteria. In
Office of Energy Research under DE-AC03-76SF00098, and the National

Section V, we apply this technique to binary images andScience Foundation DARPA under Grant DMS-8919074.
extend the technique to gray-scale images, textured images,2 Supported in part by the NSF Postdoctoral Fellowship in Computa-

tional Science and Engineering. and color images.
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sion (see Sapiro and Tannenbaum [20]). By flowing the
isointensity contours normal to themselves, smoothing is
performed perpendicular to edges, thereby retaining edge
definition. At the core of both numerical techniques is the
Osher–Sethian level set algorithm for flowing the isointen-
sity contours; this technique was also used in related work
by Rudin et al. [19].

In this work, we return to the original curvature flow
equation and level set algorithm and build a numerical
scheme for image enhancement based on a automatic
switch function that controls the motion of the level sets
in the following way. Diffusion is controlled by flowing

FIG. 1. Collapse of a star-shaped curve under curvature. under max(k, 0) and min(k, 0). The selection between
these two types of flows is based on local intensity and
gradient. The resulting technique is an automatic, ex-
tremely robust, computationally efficient, and a straightfor-2. BACKGROUND
ward scheme.

Traditionally, both 1-D and 2-D signals are smoothed To motivate this approach, we begin by discussing curva-
by convolving them with a Gaussian kernel; the degree of ture motion, namely,
blurring is controlled by the characteristic width of the
Gaussian filter. Since the Gaussian kernel is an isotropic It 5 F(k)u=Iu. (2)
operator, it smooths across the region boundaries, thereby
compromising their spatial position. As an alternative, Pe- We then develop the complete model which includes image
rona and Malik [18] have used an anisotropic diffusion enhancement as well. The crucial ideas on min/max flows
process which performs intraregion smoothing in prefer- upon which this paper is based have been reported earlier
ence to interregion smoothing. A significant advancement by the authors in [10].
was made by Alvarez, Lions, and Morel (ALM) [3], who
presented a comprehensive model for image smoothing. 3. MOTION OF CURVES UNDER CURVATURE

The ALM model consists of solving an equation of
the form 3.1. Formulation

Consider a closed, nonintersecting curve in the planeIt 5 g(u=G p Iu) k u=Iu, with I(x, y, t 5 0) 5 I0(x, y), (1)
moving with speed F(k) normal to itself. More precisely,
let c(0) be a smooth, closed initial curve in R2, and letwhere G p I denotes the image convolved with a Gaussian
c(t) be the one-parameter family of curves generated byfilter. The geometric interpretation of the above diffusion
moving c(0) along its normal vector field with speed F(k).equation is that the isointensity contours of the image move
Here, F(k) is a given scalar function of the curvature k.with speed g(u=G p Iu)k, where k 5 div =I/u=Iu is the
Thus, n ? xt 5 F(k), where x is the position vector of thelocal curvature. One variation of this scheme comes from
curve, t is time, and n is the unit normal to the curve.replacing the curvature term with its affine invariant ver-

Consider a speed function of the form 1 2 «k, where «
is a constant. An evolution equation for the curvature k,
see [23], is given by

kt 5 «kaa 1 «k 3 2 k 2, (3)

where we have taken the second derivative of the curvature
k with respect to arclength a. This is a reaction–diffusion
equation; the drive toward singularities due to the reaction
term («k 3 2 k 2) is balanced by the smoothing effect of
the diffusion term («kaa). Indeed, with « 5 0, we have a
pure reaction equation kt 5 2k 2. In this case, the solution
is k(s, t) 5 k(s, 0)/(1 1 tk(s, 0)), which is singular in finite
t if the initial curvature is anywhere negative. Thus, corners

FIG. 2. Motion of a curve under min/max flow. can form in the moving curve when « 5 0.
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FIG. 3. Motion of complex region under various flows.

For « 5 0, the front develops a sharp corner in finite lowing ‘‘entropy condition’’ posed by Sethian (see [23]):
If the front is viewed as a burning flame, then once atime as discussed above. In general, it is not clear how

to construct the normal at the corner and continue the particle is burnt it stays burnt. Careful adherence to this
stipulation produces the Huyghens principle construction.evolution, since the derivative is not defined there. One

possibility is the ‘‘swallowtail’’ solution formed by letting Furthermore, this physically reasonable weak solution is
the formal limit of the smooth solutions « . 0 as thethe front pass through itself. However, from a geometrical

argument it seems clear that the front at time t should curvature term vanishes (see [23]). Extensive discussion of
the role of shocks and rarefactions in propagating frontsconsist of only the set of all points located a distance t

from the initial curve. (This is known as the Huyghens may be found in [22].
Let us imagine now a very specific speed function,principle construction, see [23]). Roughly speaking, we

want to remove the ‘‘tail’’ from the ‘‘swallowtail.’’ Another namely F(k) 5 2k. This case corresponds to a curve col-
lapsing under its curvature. It can be shown that for anway to characterize this weak solution is through the fol-
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FIG. 4. Motion of notched region under various flows.

arbitrary smooth simple curve, (see Gage [8] and Grayson ft 1 Fu=fu 5 0 (6)
[9]), such a curve collapses to a single point. In Figs. 1a

f(x, t 5 0) given (7)
and 1b, we show a star-shaped region collapsing under
this flow. is such that the evolution of the zero level set of f always

Here, we have evolved the curve using the Osher– corresponds to the motion of the initial hypersurface under
Sethian level set method, see [17]. Briefly, this technique the given speed function F. This evolution equation, Eq.
works as follows. Given a moving closed hypersurface G(t), (7), is solved by means of difference operators on a fixed
that is, G(t 5 0) : [0, y) R R N, we wish to produce an Eulerian grid. Care must be taken in the case where the
Eulerian formulation for the motion of the hypersurface speed function F contains a hyperbolic component. For
propagating along its normal direction with speed F, where details, see [17, 24]. Since its introduction, this approach
F can be a function of various arguments, including the to front propagation has been used to model a wide variety
curvature, normal direction, etc. The main idea is to embed of problems, including the generation of minimal surfaces
this propagating interface as the zero level set of a higher [6], fast interface techniques [1], singularities and geodesics
dimensional function f. Let f(x, t 5 0), where x [ RN is in moving curves and surfaces in [7], flame propagation [26,
defined by 27], shape reconstruction [13, 14, 12], shape representation

and recognition [11], grid generation [25], and semiconduc-
f(x, t 5 0) 5 6d, (4) tor manufacturing [2].

3.2. The Min/Max Flowwhere d is the distance from x to G(t 5 0) and the plus
(minus) sign is chosen if the point x is outside (inside) We now modify the above flow. In order to be careful
the initial hypersurface G(t 5 0). Thus, we have an initial about signs, we simply note that the boundary of a disk
function f(x, t 5 0) : R N R R with the property that initialized so that the inside of the disk corresponds to a

negative value for the signed distance function f and a
G(t 5 0) 5 (xuf(x, t 5 0) 5 0). (5) positive value for the signed distance function f on the

outside of the disk has a normal =f, which points outward
away from the center of the disk, and a curvature definedIt can easily be shown that the equation of motion given by
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FIG. 5. Motion of notched region under min/max flow.

as = ? =f/u=fu, which is always positive on all the convex is obtained. Conversely, the effect of flow under F(k) 5
max(k, 0.0) is to allow the outward regions to move inwardlevel contours. Thus, a flow under speed function F 5 k

corresponds to the collapsing curvature flow, since the while suppressing the motion of the inward concave re-
gions. However, once the shape becomes fully convex, theboundary moves in the direction of its normal with negative

speed and hence moves inward. curvature is always positive and the flow becomes the same
as regular curvature flow; hence the shape collapses toWe need to be even more careful about signs and amend

a previous definition. We shall refer to a speed function F a point.
We can summarize the above by saying that, for thein the context of the level set equation

above case, flow under F 5 min(k, 0.0) preserves some of
the structure of the curve, while flow under F 5 max(k,(8)ft 5 Fu=fu,
0.0) completely diffuses away all of the information.

Before proceeding, we examine a slightly more complexthus, from now on, F will give the speed of the front in a
direction opposite to its normal direction. Thus, a curve shape, which is instructive. In Fig. 3, we show what

happens to a double-star-shaped region. We let the colorcollapsing under its curvature will correspond to speed
F 5 k. This will be our convention for the remainder of black correspond to the ‘‘inside’’ where f , 0 and the

white correspond to the ‘‘outside’’ where f . 0. First,this paper.
Now, motivated by work on level set methods applied in Fig. 3a, we show evolution under plain curvature, that

is, F 5 k. Eventually, the shape collapses completely.to grid generation [25] and shape recognition [11], we con-
sider two flows, namely, In Fig. 3b, we show the same curve collapsing under

F 5 min(k, 0.0); here, the outer front moves to the convex
• F(k) 5 min(k, 0.0)

hull, while the inner front collapses and disappears. The
• F(k) 5 max(k, 0.0).

last shown state is stable. In Fig. 3c, we show the same
curve collapsing under F 5 max(k, 0.0); here, the outerHere, we have chosen the negative of the signed distance

in the interior and the positive sign in the exterior region. part of the front collapses, while the inner part expands
to its convex hull. Eventually, the two meet, and theAs shown in Fig. 2, the effect of flow under F(k) 5 min(k,

0.0) is to allow the inward concave fingers to grow outward, front disappears. Finally, in Fig. 3d, we switch the roles
of black and white; thus flow with speed F 5 max(k,while suppressing the motion of the outward convex re-

gions. Thus, the motion halts as soon as the convex hull 0.0) corresponds to the same flow as in Fig. 3b; changing

FIG. 6. Motion of double-star-shaped region under min/max flow.
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ward,’’ and in others, the notch is ‘‘inward.’’ Our goal is
a flow which somehow chooses the correct flow between
F 5 max(k, 0.0) and F 5 min(k, 0.0). The solution lies in
a switch function which determines the nature of the notch.

3.4. The Switch

In this section, we present the switch function to flow
the above shape. Our choice is somewhat mysterious at

FIG. 7. Motion of star-shaped region with noise under min/max flow
at various stencil levels.

the colors corresponds to changing between the maximum
flow and the minimum flow.

3.3. The Goal

Consider now the square with notches on each side
shown in Fig. 4a. We imagine that the notches are one
unit wide, where a unit most typically will correspond to
a pixel width. Our goal is to use the above flow to somehow
remove the notches which protrude out from the sides. In
Fig. 4b, we see the effect of curvature flow; the notches
are removed, but the shape is fully diffused. In Fig. 4c, we
see the effect of flow with speed F 5 min(k, 0.0); here,
one set of notches are removed, but the other set have
been replaced by their convex hull. If we run this flow
forever, the figure will not change since the convex hull
has been obtained, which does not move under this flow.
Conversely, as shown in Fig. 4d, obtained with speed F 5
max(k, 0.0), the inner notches stay fixed and the front
moves in around them, while the outer notches are dif-
fused. Continual application of this flow causes the shape
to shrink and collapse. Finally, in Figs. 4e and 4f, we reverse
the roles of black and white, showing the effects of the
min and max flows are now reversed. FIG. 8. Image restoration of binary images with gray-scale salt-and-

pepper noise using min/max flow.The problem is that in some places, the notch is ‘‘out-
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now StencilWidth 5 0. Then, at any point (x, y), define
the flow by

Fmin/max 5Hmin(k, 0) if Average(x, y) , 0

max(k, 0) otherwise.
(9)

Here, we view 0 as the ‘‘threshold’’ value Tthreshold ; sinceFIG. 9. Threshold test for min/max flow.
it is halfway between the black value of 21 and the white
value of 1. This flow can be seen to thus choose the ‘‘cor-
rect’’ flow between the min flow and the max flow. As a
demonstration, in Fig. 5a, we show the initial notched re-first; rather than present the reasoning behind the switch,

we shall first describe it and then in the next section explain gion. In Fig. 5b, we show the results using the min/max
given in Eq. (9). To verify that our scheme is independentwhy it works.

Our construction of a switch is motivated by the idea of of the positioning of the colors, we reverse the initial colors
and show the results of the same min/max flow in Fig. 5c.comparing the value of a function with its value in a ball

around the function. Thus, imagine the simplest case, The small amount of rounding that is seen at the corners
is due to the coarseness of the calculation; the simulationnamely, that of a black and white image, in which black

is given the value f 5 21 and white is given the value is performed on a 49 3 49 grid, and the contour plotter
which locates the zero level set rounds the edges.f 5 1. We select between the two flows based on the sign

of the deviation from the mean value theorem. Define As a further test, we return to our double-star-shaped
region and again run the min/max flow. We show the initialAverage(x, y) as the average value of the image intensity

I(x, y) in a square centered around the point shape in Fig. 6a. In Fig. 6b, we add an oscillation on the
size of the grid, that is, we alternately switch grid values(x, y) with sidelength (2. p StencilWidth 1 1), where, for

FIG. 10. Min/max flow. The left column is the original with noise, the center column is the steady state of min/max flow, the right column is
the continuation of the min/max flow using a larger stencil.
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FIG. 11. Min/max flow with selective smoothing. The left image is the original. The center image is the steady state of min/max flow. The right
image is the steady state of the min/max flow together with mean curvature flow for selective smoothing.

along the boundary between the two regions. In Fig. 6c, we 1. The single min/max flow selects the correct motion
to diffuse the small-scale pixel notches into the boundary.then show the results of the min/max flow. What happens is

that the small-scale ‘‘noise’’ is removed; once this happens, 2. The larger, global properties of the shape are main-
the boundary achieves a final state which does not change tained.
and preserves structures larger than the one-pixel-wide 3. Furthermore, and equally important, the flow stops
noise. Thus, the large arms are not destroyed by the flow. once these notches are diffused into the main structure.
If we were to exchange the roles of black and white, the

4. Edge definition is maintained, and, in some global
same final shape would be obtained.

sense, the area inside the boundary is roughly preserved
We note that the level of noise removed is a function

up to the order of the smoothing.
of the size of the stencil used in computing the switch in

5. The noise removal capabilities of the min/max flowthe min/max speed. What remains are structures than are
are scale-dependent and can be hierarchically adjusted.not detected by our threshold stencil. Thus, the stencil size

6. The scheme requires only a nearest-neighbor sten-is the single parameter that determines the flow and hence
cil evaluation.the noise removal capabilities. We view this as a natural

and automatic choice of the stencil, since it is given by the
4. THE SWITCH FUNCTION IN MORE DEPTH:

pixel refinement of the image. However, for a given pixel
MIN/MAX FLOW AND THE ROLE OF MASKS

size, one can choose a larger stencil to exact noise removal
IN LEVEL SETS FLOW

on a larger scale; that is, we can choose to remove the next
larger level of noise structures by increasing the size of our The above min/max flow switch is, in fact, remarkably
threshold stencil by computing the average Average(x, y) subtle in what it does. It works for three reasons:
over a large square. We then use this larger stencil and

• First, the embedding of a front as a level set allows us tocontinue the process by running the min/max flow. We
use information about neighboring level sets to determinehave done this in Fig. 7; we start with an initial shape in Fig.
whether to use the min flow or the max flow7a which has ‘‘noise’’ in the boundary. We then perform the

• Second, the level set method allows the constructionmin/max flow until steady state is achieved with stencil
of barrier masks to thwart motion of the level setssize zero in Fig. 7b; that is, the ‘‘average’’ consists only of

• Third, the discretization of the problem onto a gridthe value of f at the point (x, y) itself. We note that when
allows one to select a natural scale to the problemwe choose a stencil size of zero, nothing happens; this is

In this section, we examine our choice of a min/maxexplained in detail in the next section. In Fig. 7c, we per-
switch in more detail and show why scales below a givenform the min/max flow until steady state is achieved with
range are removed.stencil size of 1, and the continue min/max flow with a

larger stencil until steady state is again achieved in Fig.
4.1. Min/Max Flow on Zero-Order Structures

7d. As the stencil size is increased, larger and larger struc-
tures are removed. Consider first the case of a black disk on a white back-

ground, built in the following way. We imagine initializa-We can summarize our results as follows:
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FIG. 12. Textured images. Min/max flow with flow range determined by mean curvature.

tion with the signed distance function, with f chosen as and the speed function evaluates to zero at such points.
Conversely, all the level curves in the white region, corre-negative on the inside and positive on the outside, and for

display purposes, map all negative f values into black and sponding to f . 0 must move, since the curvature is posi-
tive there and the speed function in the white region evalu-all positive f values into white. Then the normal nW points
ates to the curvature. Thus we see that in the above flow,from the black disk outward toward the white exterior. As
the black region acts like a barrier to the attempts of thedefined by = ? =f/u=fu, the curvature of the boundary is
white exterior to move the zero level set. Thus, the levelpositive. Obviously then if we move this boundary under
curves ‘‘pile up’’ around the boundary corresponding tocurvature flow, i.e., F 5 k, the boundary will move inward
the zero level set, but it does not move.and the disk will disappear. If we move the boundary under

Conversely, suppose we exchange the roles of black andthe flow F 5 max(k, 0), the same motion occurs, since the
white, and consider a white circle on a black background.curvature of all the level curves is positive. If we move
We shall show that the same thing occurs. This case corre-this boundary under the flow F 5 min(k, 0), the shape will
sponds to f . 0 in the interior and f , 0 in the exterior.remain fixed.
The normal points from outside to the inside, and theLet us define a flow, called F Stencil50

min/max , as follows:
curvature (as defined by = ? =f/u=fu) evaluates to negative.
Under our flow F Stencil50

min/max , we again examine the two re-
gions. The level curves inside the white region correspond-F Stencil50

min/max 5Hmin(k, 0) if f(x, y) , 0

max(k, 0) if f(x, y) $ 0.
(10)

ing to f . 0 all have negative curvature, hence under
max(k, 0) they cannot move and act as a barrier; similarly,

Our choice of the superscipt ‘‘Stencil50’’ means that we the level curves in the black region corresponding to f ,
only use information about the level set function f in a 0, all of which have negative curvature, attempt to move
radius 0 around the point (x, y). We now examine the inward and are stopped by the frozen white mask. Thus,
effect of the above flow. All the level curves in the black the zero level set itself does not move.

Thus, under the flow F Stencil50
min/max , convex shapes do notregion corresponding to f , 0 have positive curvature,

hence they do not move, since the min function is used move. We now show that nonconvex shapes cannot move
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motion of the level sets in the white region. Thus, there is
no motion of the zero level set.

We summarize as follows; the flow given by F Stencil50
min/max

allows no motion of the boundary. This seems like a tre-
mendous amount of work to go through to achieve F 5 0
on the boundary, but we now show that a speed function
based on a larger stencil, i.e., one which includes more
points than just the value of f at (x, y), produces motion.

4.2. Min/Max Flow on First-Order Structures

Consider the level set flow defined on a grid of size h,
and imagine that we have a shape with a perturbations on
the boundary of size one cell. As an example, we return
to the black square on a white background with notches
given in Fig. 4a. We have just seen that the flow
F Stencil50

min/max produces no motion. Consider now a flow of Sten-
cil51, in which we use the average value of f in a neighbor-
hood of radius one unit h around the point (x, y) to tell
us which flow to select,

F Stencil51
min/max 5Hmin(k, 0) if AveR5h

f(x,y) , 0

max(k, 0) if AveR5h
f(x,y) $ 0.

(11)

Here, AveR5h
f(x,y) is defined as the average value of f in a

neighborhood of radius h around the point (x, y). Similar
to the above, each region attempts to ‘‘convexify’’ itself
and hence resists the other; only in the notches is there
some confusion as to which ‘‘side’’ the notch belongs. In
the notches, however, the sign of the average value of f
is the opposite of the sign of the value at the notch. Hence,
the notches do not act as barriers, and the ‘‘external’’ flow
(either black or white), is allowed to flow through the
notch, until the perturbation is removed. Once the pertur-
bation (i.e., notch) is removed, there are no remaining
first-order structures; that is, nowhere are ‘‘convex’’ bumps
(as seen as either the black or white side) allowed to move.

FIG. 13. Min/max flow with selective smoothing. Another way to characterize this is to say that the switch
function evaluates to zero when it is impossible to further
convexify one region without ‘‘deconvexifying’’ the other.

It is important to be clear about our definition of ‘‘stop-
either. Consider the four-pointed star-shaped region as ping.’’ The fact that curve stops is due to three effects.
given in Fig. 1a, where the inside is black and the outside First, we embed it in a level set framework. In fact our
is white. Inside the star-shaped region, the level set func- definition of the switch function assumes that a given curve
tion is negative, and hence the flow min(k, 0) is selected is expressed as a level set of some higher dimensional
and attempts to move the concave regions, i.e., regions function. Second, the calculation is performed on a grid.
with negative curvature. However, the level set function And third, the ‘‘piling up’’ of level sets, as discussed in the
is positive outside and suppresses the motion of concave text, causes a shearing to develop in the level set function.
regions due to the selection of max(k, 0) flow (see Eq. 10). The definition of ‘‘stop’’ here is that the curve motion has
The net effect is for the white region to act as a barrier to essentially gone to zero and that running the calculation
the black region. Similarly, in convex regions around the out for an extremely long time is required for any apprecia-

ble motion to occur.zero level set, the black region acts as a barrier to the
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FIG. 14. Min/max flow applied to multiplicative noise.

4.3. Min/Max Flow on kth-Order Structures with uniform distribution between 0 and 255. Thus, a full
spectrum of gray noise is added to the original binary

The above discussion explains why the min/max flow
image. The left column gives the original figure with the

works; furthermore, it provides a nesting of flows designed
corresponding percentage of noise; in the right column are

to remove successively larger scales. By way of notation,
reconstructed values. We stress once again that the figures

we can now write that
on the right are converged; they stop automatically, and
continued application of the scheme yields no change in
the results. Results are reconstructed from 25, 50, 60, and

F Stencil5k
min/max 5Hmin(k, 0) if AveR5kh

f(x,y) , 0

max(k, 0) if AveR5kh
f(x,y) $ 0.

(12) 80% noise.

5.2. Gray-Scale Images: Min/Max FlowsThus, a stencil of size k computes the average over a disk
and Scale-Dependent Noise Removalof radius kh, where h is the discretization size. Roughly

speaking, we can see that this flow will attempt to remove Imagine a gray-scale image, for example, two concentric
structures of width kh. As an example, let k 5 y, and return rings of differing grey values. Choosing a threshold value
to the case of the disk. Since the average will compute to of 127.5 is clearly inappropriate, since the value ‘‘between’’
a value close to the background color, on this scale all the two rings may not straddle the value of 127.5, as it
structures are insignificant and the max flow will be chosen would in a binary image. Instead, our goal is to locally
everywhere, forcing the boundary to disappear. construct an appropriate thresholding value. We follow

We thus see that the min/max flow as defined in Eq. 12 the philosophy of the algorithm for binary images.
provides a hierarchy of scales that can be removed from Imagine a gray-scale image such as the two concentric
a shape. In the next section, we apply this flow to a variety rings, in which the inner ring is slightly darker than the
of images. exterior ring; here, we interpret this as f being more nega-

tive in the interior ring than the exterior. Furthermore,
5. MIN/MAX FLOWS FOR BINARY, GRAY-SCALE, imagine a slight notch protruding outward into the lighter

TEXTURE, AND COLOR IMAGES ring (see Fig. 9). Our goal is decide whether the area within
the notch belongs to the lighter region, that is, whether it

5.1. Application of Min/Max Flows to Binary Images
is a perturbation that should be suppressed and ‘‘reab-
sorbed’’ into the appropriate background color. We deter-We now apply our scheme given by Eq. (9) to the prob-

lem of binary images with noise. Since we are looking at mine this by first computing the average value of the inten-
sity f in the neighborhood around the point. We thenblack and white images, where 0 corresponds to black and

255 to white, the threshold value Tthreshold is taken as 127.5 must determine a comparison value which indicates the
‘‘background’’ value. We do so by computing a thresholdrather than 0. In Fig. 8, we add noise to a black and white

image of handwritten characters. The noise is added as Tthreshold , defined as the average value of the intensity ob-
tained in the direction perpendicular to the gradient direc-follows: 10% noise means that at 10% of the pixels, we

replace the given value with a random number chosen tion. Note that since the direction perpendicular to the
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This has the following effect. Imagine again our case of
a gray disk on a lighter gray background, where the darker
gray corresponds to a smaller value of f than the lighter
gray. When the threshold is larger than the average, the
max is selected, and the level curves move in. However,
as soon as the average becomes larger, the min switch
takes over, and the flow stops. The arguments are similar
to the ones given in the binary case.

In Fig. 10, we use this scheme to remove salt-and-pepper
gray-scale noise from a gray-scale image. Once again, we
add noise to the figure by replacing X% of the pixels with
a new value, chosen from a uniform random distribution
between 0 and 255. Our results are obtained as follows.
We begin with two levels of noise; 25% noise in Fig. 10a
and 50% noise in Fig. 10d. We first use the min/max flow
from Eq. 13 until a steady state is reached in each case
(Figs. 10b and 10e). This removes most of the noise. We
then continue with a larger stencil for the threshold to
remove further noise (Figs. 10c and 10f). For the larger
stencil, we compute the average Average(x, y) over a larger
disk and compute the threshold value Tthreshold using a
correspondingly longer tangent vector.

5.3. Selective Smoothing Coupled to Min/Max Flows:
Medical Images

In certain cases, one may want to remove some level of
detail in an image; for example, in medical imaging, in
which a low level of noise or image gradient is not desired
and the goal is enhancement of features delineated by large
gradients. In this case, a simple modification of our min/
max flow can achieve good results. We begin by defining
the mean curvature of the image when viewed as a graph;
that is, let

M 5
(1 1 Ixx)I2

y 2 2IxIyIxy 1 (1 1 Iyy)I 2
x

(1 1 I 2
x 1 I 2

y)3/2 (14)

be the mean curvature. If we flow the image according to
its mean curvature, i.e.,

FIG. 15. Continuous Gaussian noise added to image.

It 5 M(1 1 I 2
x 1 I 2

y)1/2, (15)

this will smooth the image. Thus, given a user-definedgradient is tangent to the isointensity contour through (x,
threshold Vgradient based on the local gradient magnitude,y), the two points used to compute are either in the same
we use the following flow to selectively smooth the image:region or the point (x, y) is an inflection point, in which

the curvature is in fact zero and the min/max flow will
always yield zero. Fmin/max/smoothing

Formally then,
5HM if u=Iu , Vgradient

min/max flow otherwise.
(16)

Fmin/max 5Hmax(k, 0) if Average(x, y) , Tthreshold

min(k, 0) otherwise. Thus, below a prescribed level based on the gradient,
we smooth the image using flow by mean curvature; above(13)
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FIG. 16. Reconstruction of color images using min/max flow.

that level, we use our standard min/max flow. Other state min/max flow image. In Fig. 11c, we show the steady
state obtained with min/max flow coupled to mean curva-choices for the smoothing flow include isotropic diffusion

and curvature flow. We have had the most success with ture flow in the lower gradient range. We use the value
Vgradient 5 7.5 for this simulation. Derivatives are computedmean curvature flow; isotropic diffusion is too sensitive to

variations in the threshold value Vgradient , since edges just using central difference approximations with a unit spatial
step size, i.e., Dx 5 Dy 5 1.below that value are diffused away, while edges are pre-

served in mean curvature flow. Our choice of mean curva- As an experiment, we can apply this min/max flow with
an additional modification to textured images. Our previ-ture flow over standard curvature flow is because mean

curvature flow seems to perform smoothing in the selected ous schemes have focused on viewing the image as a collec-
tion of level curves of the intensity function. However,region somewhat faster. This is an empirical statement

rather than one based on a strict proof. viewed as a graph, we may also evaluate the mean curva-
ture (which is the average of the two principle curvatures)In Fig. 11, we show results of this scheme (Eq. 9) applied

to a digital subtraction angiogram (DSA). In Fig 11a, we and the Gaussian curvature (the product of the two princi-
ple curvatures) of the image when viewed as a surface,show the original image. In Fig. 11b, we show the steady-
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as discussed above in the section on selective smoothing. by our min/max flow. We point out three couplings in par-
ticular:Viewing a texture as a collection of ridges, valleys, grains,

etc., in some cases we note that isolated spots of noise
• Image sharpening algorithms based on shock filters,(peaks and troughs) have large absolute values of mean

as in [16, 4], may be coupled to our min/max flow.curvature, while the fundamental texture forms will have,
• The rate of smoothing is sometimes made to vary in-relatively speaking, lower values of the mean curvature.

versely with the gradient magnitude [19]. If such an effectThis is by no means an absolute statement but suggests an
is desired in our setting, one merely replaces the curvatureexperiment. We compute the mean curvature of an image
k in our flow min/max(k, 0) by k/u=fu.when viewed as a graph and then establish a lower value

• The affine invariant flow k1/3 [20] can also be modified(M1) and an upper value (M2) for the mean curvature. In
by using the min/max(k1/3, 0).the lowest range we turn off all flows; in the middle range

we perform min/max flow, and in the upper range, we All of the above couplings are completely straightfor-
perform mean curvature flow as described above. We apply ward, and we do not discuss them in detail here.
the results of this scheme for processing textured images
with noise in Fig. 12. Again, we add salt-and-pepper gray- 7. ADDITIONAL EXAMPLES
scale noise to the original. The values of M1 and M2 are

In this section, we present further images which areset to 2.0 and 3.5, respectively.
enhanced by means of our min/max flows. We begin with

5.4. Color Images a series of medical images in Fig. 13; here, no noise is
artificially added, and instead our goal is to enhance certainThe extension of the techniques presented above to color
features within the given images.images is straightforward. We decompose the signal into

Next, we study the effect of our min/max scheme onthree components (either HSV, RGB, or some other suit-
multiplicative noise added to a gray-scale image. In Fig.able framework) and process each channel separately ac-
14 we show the reconstruction of an image with 15% multi-cording to the techniques developed above; the full result
plicative noise.is then assembled.

Next, we add 100% Gaussian gray-scale noise; that is, aThere is a distinct problem with this approach. In each
random component drawn from a Gaussian distributionchannel, we solve the min/max partial differential equation
with mean zero is added to each (every) pixel. In Fig. 15flow. Because each channel is treated separately, occasion-
we show the original with noise together with the recon-ally intermediate values during the flow in each channel
structed min/max flow image. Here we use the couplingcan superposition to create a new, unexpected color. This is
min/max(k/u=fu, 0).in fact a well-known problem in color interpolation theory;

Finally, we apply our scheme to a color image with 100%given any two colors, it is not clear how to smoothly inter-
Gaussian color noise added; that is, Gaussian noise addedpolate from one to the other so that the intermediate colors
to all three channels. In Fig. 16c we show the original withare always perceived as an appropriate blend between the
noise and in Fig. 16d we show the image reconstructedtwo. While possible solutions are possible if one confines
using min/max flow.the two colors to restricted regions of color space (such as

two colors with the same hue), there is no general solution
ACKNOWLEDGMENTSto this phenomenon. Our algorithm makes no attempt to

find an optimal interpolation path through color space;
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